The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells.

نویسندگان

  • Daniel J Kelly
  • Christopher R Jacobs
چکیده

It is becoming increasingly clear that mesenchymal stem cell (MSC) differentiation is regulated by mechanical signals. Mechanical forces generated intrinsically within the cell in response to its extracellular environment, and extrinsic mechanical signals imposed upon the cell by the extracellular environment, play a central role in determining MSC fate. This article reviews chondrogenesis and osteogenesis during skeletogenesis, and then considers the role of mechanics in regulating limb development and regenerative events such as fracture repair. However, observing skeletal changes under altered loading conditions can only partially explain the role of mechanics in controlling MSC differentiation. Increasingly, understanding how epigenetic factors, such as the mechanical environment, regulate stem cell fate is undertaken using tightly controlled in vitro models. Factors such as bioengineered surfaces, substrates, and bioreactor systems are used to control the mechanical forces imposed upon, and generated within, MSCs. From these studies, a clearer picture of how osteogenesis and chondrogenesis of MSCs is regulated by mechanical signals is beginning to emerge. Understanding the response of MSCs to such regulatory factors is a key step towards understanding their role in development, disease and regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of insulin-like growth factor-induced Wharton jelly mesenchymal stem cells toward chondrogenesis in an osteoarthritis model

Objective(s): This study aimed to determine the collagen type II (COL2) and SOX9 expression in interleukin growth factor (IGF-1)-induced Wharton’s Jelly mesenchymal stem cells (WJMSCs) and the level of chondrogenic markers in co-culture IGF1-WJMSCs and IL1β-CHON002 as osteoarthritis (OA) cells model. Materials and Methods: WJMSCs were induced with IGF1 (75, 150, and 300 ng/ml) to enhance their ...

متن کامل

In Vitro Study of the Protective Effects of Hydroalcholic Extract of Soybean against Impact of Oxidative Damage on Osteogenesis and Chondrogenesis of Mouse Limb Bud

Introduction: Oxidative stress has been implicated in the pathogenesis of various diseases affecting chondrogenesis or the function of articular cartilage. The purpose of the present study was to find the effect of soybean extract on reduction of detoriation effects of oxidativestress in embryonic chondrogenesis in vitro. Methods: In order to separate ectoderm from mesenchyme, the limb buds ...

متن کامل

Ex vivo Expansion and Differentiation of Mesenchymal Stem Cells from Goat Bone Marrow

Objective(s) Mesenchymal stem cells (MSCs) from large animals as goat which is genetically more closely related to human have rarely been gained attentions. The present study tried to isolate and characterize MSCs from goat bone marrow. Materials and Methods Fibroblastic cells appeared in goat marrow cell culture were expanded through several subcultures. Passaged-3 cells were then different...

متن کامل

Investigation of FLK-1 Gene Expression in Differentiated Mesenchymal Stem Cells, Exposed to Chemical, Mechanical and Chemical-mechanical Factors, in order to Study the Differentiation and its Stability

Background: Mesenchymal stem cells (MSCs) are multipotent cells, capable of differentiating into different cell lines.They can sense their surrounding biochemical and biophysical factors, which play major roles in their differentiation toward different phenotypes. Therefore, the exposure of these cells to endothelial growth factor (VEGF) as well as hemodynamic biomechanical forces, which act on...

متن کامل

Effect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture

Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Birth defects research. Part C, Embryo today : reviews

دوره 90 1  شماره 

صفحات  -

تاریخ انتشار 2010